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A method is proposed for solving a differential game of group pursuit with a terminal payoff function, consisting of the systematic 
utilization of the idea of Fenchel-Moreau duality [l] applied to the general scheme of the resolving function method [2]. It is 
shown that if the parameters of a quasi-linear control process and terminal payoff function satisfy certain sufficient conditions, 
the group pursuit will come to a successful end. The guaranteed termination time is determined on the basis of information 
about the initial state of the process and the prehistory of the evader’s control. The results are illustrated for a model example. 
0 1997 Elsevier Science Ltd. All rights reserved. 

In [3] we proposed a method of solving a differential two-person pursuit game with a terminal payoff 
function (PF). The basic idea of the method is that a resolving function can be expressed in terms of 
the conjugate to the PF and, using the involutive property of the conjugation operator for a convex 
closed function, one obtains a guaranteed estimate of the terminal value of the PI? However, attempts 
to employ the method to solve a differential group-pursuit game with a terminal PF encounter funda- 
mental difficulties, related to the fact that the PF in this case is defined as the minimum of a finite number 
of convex functions and need not itself be convex. 

These difficulties are overcome by the method proposed in this paper. 
The paper is an extension of the idea in [2-51; it is closely related to the research reported in [6-111 

and indicates new possibilities for applying convex analysis to the solution of many-person game problems 
of control. 

1. FORMULATION OF THE PROBLEM AND AUXILIARY RESULTS 

Consider a conflict-controllable process described by a system of quasi-linear differential equations 

ii =A;z;+~~(u~,u), ZiER~, UiEUi, u EV (l-1) 

where Ai is a square matrix of order ni, Cpi: Vi x V + R”’ is a function continuous jointly in all its 
variables, and Vi and I/ are non-empty compact sets in the Euclidean space R”‘. Here and henceforth, 
i = 1,. . . ,v. 

We are given a payoff function G(Z), which determines the time at which the game ends and may be 
represented in the form 

U(Z)=,~i~vUi(Zi), Z=(Z,r...rZv)I Zi E R~, bi: R~ 3 R’ (l-2) 

If Zi(t) = Zi(ZF, U:(‘), v’(‘)) is a trajectory of system (1.1) corresponding to an initial state zy and 
the players’ chosen controls U’i(*) = {Ui(T): L+(Z) E Vi, T E [O, t]}; d(‘) = {V(Z); V(‘K) E V, i E [O, t]}, the 
game will be assumed to have ended at time T if 

~~N-l) 6 0, a-.l = (z,(T), . . . . z,(T)) 0.3) 

The object of the group of pursuers (ul, . . . , u,) is to make the game end, while that of the evader 
(v) is to achieve the opposite. 
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We shall assume that the controls used during the game by the pursuer and the evader are Lebesgue- 
measurable functions of time. We will take the side of the pursuer and indicate sufficient conditions 
which, if satisfied by the parameters of the process (1.1) and of the terminal payoff function (1.2), will 
ensure that the game (l.l), (1.3) comes to an end. At the same time we will determine the guaranteed 
termination time on the basis of information about the initial state z” = (zy, . . . , 2:) and the prehistory 
of the evader’s control v(.). 

We shall assume that the functions oi(Zi) are convex and Lipschitz continuous 

Ibi(zi)-bi(xi)Idfillzi-xiI), Ii,09 ZivxiER’ (1.4) 

It is well known from convex analysis [l] that these functions may be expressed in the form 

Oi(Zi) = pe~a;[(PiZi)-cr;(pi)l I 
where @(pi), ot: R”’ + R' is the function conjugate to CT~;ZJ defined by the equality 

~~(Pi)= SUP I(pi,zi)-~i(zi)l, Pi E R’ 2+&i 
and dom of is the effective set [l] of the function 07 @i), that is 

dome: ={pi E R~:a;(pi)<+~) 

Under these conditions, it follows from (1.4) that dom CT: is a compact set [l]. 
We require in addition that the functions oi(ti) should be bounded below. Then, by (1.6), we have 

-o;(O) = inf ai 
2&Q 

and so the set dom 07 contains zero. 
Let Li be the linear span of the set dom CT? [l] and let xi be the orthogonal projection operator from 

R”’ onto the subset Lie Using representation (1.5), one can verify the relation 

Oi(Zi) = Gi(XiZi)r Zi E Rq (1.7) 

2. SCHEME OF THE METHOD AND MAIN RESULT 

We introduce multivalued mappings 

where W;:(t, Ui, V) = Z@i(t) Cpi(Ui, v); @i(t) = eq(tii), t 3 0. 
It is assumed that the parameters of process (1.1) satisfy Pontryagin’s condition [2,6,8], which means 

that K(t) f 0 for all t z 0. 
Since the mappings wi(t) are upper semicontinuous, each of them contains at least one Bore1 selector 

[2,9, 121. Denoting the sets of these selectors by Ii, we fix one selector in each x(.) E Pi and define 

Si(‘*ZisY(*)) = Ici@i(t) Zi +i Y(T) dT 
0 

We define a resolving function for each by 

@If3 2, Zi vu 9 Y(‘)) = 

= sup{ B 3 0: min max 
vidi pid0mCJ; 

[(pi,Ii)+piJi)]~O}, t) ~30, Zi oRYv u EV 

li = ~(z-CUi# )-Yi(t-T), Ji =(pi,Si(t,Zi,Yi(‘))-o;(pi)) 

(2.1) 

It follows directly from Pontryagin’s condition that 
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Consequently, if Pontryagin’s condition is satisfied, the inequalities in (2.1) are true for at least the zero 
values of the resolving functions. We also note that if oi(&(t, zi, yi(.)) c 0, then pt(t, 2, zi, V, r(.)) = +- for 
all v E V, t E [0, t]. But if it is true that for some t, zi E R”I, ti.) E Ii, o&(t, zi, x(.))) > 0, the resolving 
functions &(t, T, zi, v, m(.)) take finite values and are bounded uniformly with respect to t E [0, t], v E V. 

Lemma 2.1. Suppose that the parameters of process (1.1) satisfy Pontryagin’s condition, and that the 
payoff function (1.2) satisfies the conditions of Section 1. Then, if it is true that for some t > 0, zi E R”’ 
and a(.) E Ii, o(&(t, zi, a(-))) > 0, then 

fij(f,v )=Pj(f*‘59Zj9u VYi(‘)) 

is a Bore1 function jointly with respect to all its variables (r, v) on the set [0, t] x V. 

(2.3) 

proof. Fix t > 0, zi E R”’ and m(.) E Ii such that Oi(&(t, zi, x(.))) > 0. It follows from our assumptions 
concerning the parameters of process (1.1) and the payoff function (1.2) that the functions vi(Ui, V,pi, 
27 ‘I;:, Pi) = (pit Wt - T Ui, v> - Yi) + Wi are continuous jointly in all variables, and consequently [lo] 
the same is true of the function 

~i(U *r*yj,pi)= min max Wi(UiJ*Pi~r*Yi*Pi) 
UieUi piaiomU; 

Then, as shown in [9], the multivalued mappings 

are upper semicontinuous, and their selectors 

Pi(T9 *Yj)=sUp(~j:pi E Bi(7.U ,yi)) 

are Bore1 functions jointly with respect to all their variables. 
Therefore, by the superposition property for Bore1 functions [12], applied to the functions (2.3) 

are Bore1 functions on the set [0, t] x K 
Consider the function 

T(z,y(-))=inf(t 2 0: inf max Hi(r), 1) 
” (.)El-l, ICiu, 

Hi(t) = i ~i(tv~vzi,u (*)vYi(.)) d7 
0 

z=(z,,...* z,), Y(.)=(Y~(.),...,Y~(.)), Zi ER’, Yi(‘)Eri 

P-4) 

where RY is the set of all measurable functions whose values lie in V. 
If the inequality in the braces in (2.4) is not true for all t 3 0, we put T(z, r(.)) = +m. 
If i exists such that pi(t, z, zi, v, x(.)) = +- for T E [0, t], v E V, we agree to put Hi(t) = +m and the 

inequality in (2.4) will hold automatically. 

Theorem 2.1. Suppose that the parameters of process (1.1) satisfy Pontryagin’s condition, the payoff 
function (1.2) satisfies the conditions of Section 1, and for some z” = (zy, . . . , zt), ?p(.) = (#, . . . , f”), 
zy E R”I, #(.) E Ii we have the inequality T(z’, f(.)) < +=. Then the game may be completed at time 
T(z’, T(.)) from the initial state z”. 

Proof. Set T = T(z”, f(.)). Let v(z), v(r) E K r E [0, r] be an arbitrary measurable function. We will 
demonstrate the pursuers’ choice of controls. 
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Let us consider the case 

Define a control function by 

@(t)= j Bi(T,f,z;,u (r),y:C)) dr 
0 

The function h(t) is continuous and non-increasing, and h(0) = 1. It follows from the definition of T 
that t. exists, 0 G t* G T, for which 

h(r.) = 0 (2.5) 

Consider the multivalued mappings 

ZF = y(T-T,Uj$)-yp(T-T)* Jf =(pi,si(T,Zp,YQ(‘)))-O:(Pi) 

0 s ‘5 c tr, UE v 

These mappings are Bore1 jointly in all their variables. 
Indeed, the functions 

Xi(Ui,U*r,yjrfii)= max [(~i*Wi(T-f*u~*u I-Yi)+BJiol 
pidomo~ 

are continuous jointly in their variables. Hence the mappings 

Ui(r,u *yiSpi)=( Ui E Ui:Xi(Ui*U~7~7i~~i)c O) 

are upper semicontinuous [9] and therefore the multivalued mappings 

Ui’(z,U)=~i(~,U,7i(T-r),B,(T,.r.Zi0,u,7P(’))) 

are Bore1 jointly in the variables (r, v), as superpositions of semicontinuous and Bore1 mappings [12]. 
Then the selectors 

u~(w)=lexminU,‘(T,u), Osrct,, u E V 

are Bore1 functions in (2, v) [2, 121. 
Consider the multivalued mappings 

u~(rJJ)=(ui dJi:zi” =O}, 1. S;zST, u EV 

These mappings are Bore1 jointly in (2, v) [2, 91. Then the selectors 

u~(w)=lexminCJ,Z(r,u), f, G7CT, u EV 

are Bore1 functions in (2, v) [2,12]. 
The pursuers’ controls in the interval [0, r] are defined as 

Ui (7) = 
ui’(w (7)), 7 E ro, L I 
u~(7.u (5)). 7 ElL,Tl 

The functions Ui(Z) are measurable [2, 121. 
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We now consider the case when o(c(T, z”, f(.))) c 0. Then a number j (j = 1, . . . v) exists 
such that oj(Q(Z”, z$ fj(*))) 6 0 and thejth pursuer’s control in [0, T] is defined as Uj(T) = U’j(T, V(T)). 
This function is also measurable [2,12]. The controls of the remaining pursuers are arbitrary. 

With the control of the pursuer group chosen in this way, relation (1.3) will hold at time Ton the 
appropriate trajectories of process (l.l), whatever control is chosen by the evader. 

Indeed, Cauchy’s formula for process (1.1) implies the representation 

nz,(*)=Si(T.ZP,y~(‘))+j cdz (2.6) 
0 

Let 0(&T, z”, $(.))) < 0. Then a numberj (j = 1 , . . . , V) exists such that Oj(G(T, Z; $(.))) s 0. In accor- 
dance with the control law for the pursuer group, we have 7cZj(T) = G(T, zy, $.)). Hence the truth of 
(1.3) follows immediately from (1.7) and representation (1.2). 

Now let o({(T, z”, p(.))) > 0. Then by (1.2) 
a numberj (j = 1, . . . , v) exists such that 

we have Oj(&(T, zy, #(.))) > 0. It follows from (2.5) that 

1 - $(r*) = 0 

Let us follow the jth pursuer. Relations (1.7) and (2.6) yield 

(2.7) 

aj(zj(T))= max Jy +i (Pj*lT)dT 
pidomo; 1 0 1 cw 

Adding to and subtracting from the bracketed expression the quantity +‘$t.), we conclude that if 
the pursuer group choose their control in accordance with the above law, the jth pursuer can guarantee 
that at time T we have the inequality 

Consequently, taking (2.7) and (1.2) into account, we obtain (1.3). 

Corollary 2.1. Suppose that the parameters of process (1.1) satisfy Pontryagin’s condition, and that 
the payoff function (1.2) satisfies the assumptions of Section 1. Then, if the purster group employs 
;y cytrol laws described in the proof of Theorem 2.1, for any T, 0 < T c T(z , f(.)) a number j 

= ,...) v) exrsts such that 

SUR 
u (.)E ” 

o(Z(T))~“j(Sj(T,Z9,Yq(.))) 
[ 

l-,($& ,TEvHFtT) 1 
The proof is analogous to that of Theorem 2.1, provided the control function is defined as 

h(t)= inf max H:(T) - ,rnfyv Zf#a(t) 
” (.)eO, ICiCV 

3. GENERALIZED DISTANCE AND RESOLVING FUNCTIONS 

Let MT be convex closed sets and let Si be convex closed bounded sets whose interiors contain zero. 
Then for all z = (zi, . . . , zv), zi E R”’ one can define a generalized distance function [lo] 

s=s,x...xS,, h-f* = (J h-f:, d4(zjMT)=infIp i30: ZiEM,'+PiSi} 
i=l 

It can be shown that the generalized distance function (3.1) satisfies the conditions of Section 1. 
Let us calculate the functions conjugate to the functions dsi(zilM~). 
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We first note that 
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d~(ZiIM,~)=inf(Ccs,(zi-m):mE M;) 

where p,r.(xi) = inf {A > 0: xi E p$i} is the calibration function of the set Si [lo]. 
Therefore, relying on the definition of the infimal convolution operation [l, 91, we have 

where Cl is the symbol of the infimal convolution operation [l],fi(Xi) = psi (xii) is the calibration function 
of the set Sip xi E R”’ and gi(yi) = 6bJMf) is the indicator function of the set MT [l]. 

By the duality theorem for the operations of addition and infimal convolution [l], we obtain the 
following formula for the conjugate functions 

C(M,‘Vpi)9 Pi E sF d~i(ilMi’)(Pi)=~‘(Pi)+g,‘(Pi)= +. 
t ’ pi kES,O 

where ST = (pi E Z?‘?(pi, Xi) G 1 for each xi E Si} is the polar of the set Si [l], fl@i) = G(pilSiO) is the 
indicator function of the polar of the set Si, and gf(pi) = C(M$ pi) is the support function of the set 
MT. 

Here we have used the fact that the calibration function of Si is the support function of the polar Sp 
[l], as well as the duality of the indicator and support functions of a convex closed set [l]. 

Thus, taking (1.5) into consideration, we have 

domdi(-IM,!)(pi)=$, dq(~iIM,‘)=m 
9 

[(pivZi)-C(Mt’,pi)l 
PiS . 

Using this representation one can prove the following. 

Lemma 3.1. Let Xi be a compact set, MT be a convex closed set and Si be a convex compact set with 
zero in its interior. Then a necessary and sufficient condition for Xi rl MT # 0 is that 

min m 
.ZiEXi pie ’ 3 

[(pi,Zi)-c(M,‘*Pi)le O 

where $ is the polar of the set Se 
Let us take My to be cylindrical sets of the form M: = @ + Mi, where My is a linear subspace of R”, 

h4i is a convex compact subset of the orthogonal complement Li of MT in R”‘. Relation (2.1) then implies 
an expression for the resolving functions &(t, Z, zi, v, x(.)) 

SUp(Bi 3 0: min yi,“i~~~~q[(Pi,~(r-7,Ui,U)-Yi(r-7))+ 
I 

+~i[(pi,~i(t~Zi~Y(.)))-C(~i,pi)ll~ 01, ~3 2) 0, Zi E R’v v E V 

where Si is a convex subset of R”’ whose interior contains the zero of the space. 
Using Lemma 3.1, it can be shown that these functions are identical with the resolving functions 

Q(T, zi, v, yi(‘)) defined by the formula [2] 

We have thus established the relation between our results and the general scheme of the method of 
resolving functions for group pursuit [2,5]. 

The determination of resolving functions may be. a far from simple task Under some special conditions 
on the parameters of process (1.1) and the payoff function (1.2) the problem may be simplified. 

Lemma 3.2. Let process (1.1) be linear, that is, the functions vi: Ui x I/+ R”’ have the form Cpi(Ui, V) 

= Ui - v, and assume that Pontryagin’s condition is satisfied. The terminal set M* is the union of sets 
MT, MT C R”‘, each of which may be expressed as MT = j@ + liSi, where @is a linear subspace of R”‘, 
Zi is a non-negative number, and Si is a convex compact subset of the orthogonal complement Li of @ 
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in R”‘, whose interior contains the zero of the subspace Li. Continuous positive functions ri(t) exist such 
that q@i(t)ui = ri(t)&. Then the resolving functions 

Bi(tlsZi,U,yi(.)),t,~~O, z~ER’, u EV, ri(.)Eri 

for Psi (Si(4 =i, YiC.1)) > 4 are the largest positive roots of the equation 

Psi (Xi <Pi 1) = 5 tt - 5, + Biri 

considered as an equation in pi, where z(pi) = x&(t - Z)V + ~(t - Z) - &(t, zi, x(.)). 

Proof. Relying on the assumptions of the lemma, we conclude from (2.1) that the resolving functions 
pi@, 2, zj, v, x(-)) with their argument values fixed are the maximum numbers pi such that 

minm 
Y *Psi *is j 

[(pj,~(t-z)Ui-ffioi(z’t) U ~~~(t~~))+~~[(~~~~~(z~Z~~Y~(~)))~c(f~s~~~~)lla O 

These relations are equivalent to the following ones 

m$[(-p. Xi <Pi )I - (I;: (t - 2, + B&i )P$ (Pi )I d O 
Pia 

(3.2) 

Here we have used the Minimax theorem [l, lo] and the following well-known relation from convex 
analysis [l] 

c(si*Pi)=cL$(Pj)v Pi E 4 (3.3) 

Using this relation and inequality (3.2) we obtain the required result. 

Corollary 3.1. Under the assumptions of Lemma 3.2, let Si be the unit sphere of the space Li with 
centre at zero. Then the resolving functions are the largest positive roots of the quadratic equations 

considered as equations in pi. 
The proof follows from (3.3), taking into account the fact that the support function of the unit sphere 

equals the Euclidean norm. 

4. SIMPLE MOTION 

Let S denote a convex compact subset of i?, k > 1, whose interior contains zero. Consider the v 
pursuers 

pi =Ui, Xi ERk, k > 1, cLs(Ui) d 1 (4-l) 

and the evader 

j’i=Vv YiER’, ps(~)Sl (4.2) 

The game is assumed to be over if ds(Xi]y) = 0 for some i. Let us reduce the problem to the form 
(1.1)-(1.3). To that end, put zi = Xi -y. Then, instead of Eqs (4.1) and (4.2) we obtain the following 
conflict-controllable process 

ii =Ui-U, Zi ERk, PS(Uj)~ 1. PSOJ )S 1 (4.3) 

with terminal payoff function 



574 I. S. Rappoport and A. A. Chikrii 

In this case Li = Rk and xi is the identical operator, represented by the k-dimensional identity matrix. 
The matrices Ai are k-dimensional zero matrices and @i(t) are k-dimensional identity matrices. 

We first verify Pontryagin’s condition 

wj(t,U)=S-u, K$(t)={O) 

The condition H$(t) = (0) uniquely defines the selectors x(t) = 0 and the functions h(t, zi, “I;:(.)) = 
zi. Then, provided zi z 0, we derive from (2.1) that 

~i(~~~~Zj,u~O)=sUp(~jP0:minm~[(~j~~i-~)+~i(pi~Zj)1~0}, 
&ES &S 

t~r~0, ziERk, u ES 

By Lemma 3.2, the resolving functions of the pursuers, when ps(Zi) > 0, are the greatest positive roots 
of the equations ~S(V - pgi) = 1 for pi+ 

In particular, if S is taken to be the unit sphere centred at zero, Corollary 3.1 implies that the resolving 
functions may be written in the form 

The time required to complete the group pursuit is 

V&O) = T(z) = min r 2 0: 
i 

inf max 5 pi(zi,u (r))dz = I 
u (,)Efls ICiCv o 1 

It can be shown [2] that the following inequality holds 

inf max j Pi(zi,u(r))d7~ ’ 
” (.)EfaS ISiCV 0 ; @z), w = $,?c, gy.” Pi (Zi JJ ) 

which implies the estimate 

T(z) s v/6(z) (4.4) 

Note that here we are considering the problem only qualitatively, that is, we wish to ensure that the 
group pursuit time T(z) is finite, disregarding the question of minimizing the time. 

Since by definition 6(z) 2 0 for all z = (zi, . . . , z,), zi E Rk, it follows that, to ensure that the group 
pursuit time T(z) will be finite, we must determine those states z for which 6(z) > 0. 

Define 

p(z) = min max CZj# 19 
p&)61 ISis& 

zi = Zj 1 pS(Zj) 

It is obvious that p(z) > 0 if and only if 6(z) > 0. On the other hand, we have the following proposition. 

Lemma 4.1. The function p(z) is positive if and only if the zero of the space Rk lies in the interior of 
the convex polyhedron spanned by the vectors Zi, that is 

0 E inf cog=, (4.5) 

Proof. Suppose that (4.5) is true. This means that zero belongs to the interior of the convex polyhedron 
spanned by the vectors Zi. In the terms of support functions [l], this may be expressed as follows: 

0 < maxl,isV (&, v) for all v, Jo = 1 

or, since the left-hand side of the inequality is independent of v, we have p(z) > 0. Reasoning in the 
inverse direction we get the desired result. 

Theorem 4.1. Let z” = (zy, . . . , zt) be the initial state of process (4.3). Then, if 



Guaranteed result in a differential game of group pursuit with terminal payoff function 575 

0 E inf co(Z,O), ZF = $ / ps(.$) (4.6) 

the group pursuit problem is solvable at a time T(z”) for which 

T(z0) s v/a(P) 

When that happens, if t* = t*(v(.)) is the switching time, that is, a zero of the control function 

then the pursuers’ controls achieving the time T(z’) in the interval [0, t.] have the form 

ui CT) =” CT) - Bi (2: *U (T))Z~ 

while in the interval (t., T(z’)], for subscripts satisfying the equality 

the pursuers’ controls are set equal to ui(z) = ~(7)~A.s to the remaining subscripts i, the pursuers’ controls 
may be defined arbitrarip! tie inteqal+(ta, T(z )]. 

If the initial position z - (zr, . . . , z,) IS such that condition (4.6) fails to hold, the evader can avoid 
capture throughout the infinite half-interval. 

Proof. Suppose that the initial position z” = (z”,, . . . , z”,) is such that (4.6) holds. Then, by Lemma 
4.1, p(z’) > 0 and so S(zo) > 0. The fact that the time T(z’) is finite now follows from estimate 
(4.4). The laws by which the pursuers choose their controls before and after switching follow from the 
proof of Theorem 2.1. We note that in order to determine the switching time t* at each time t, one needs 
information about the prehistory of the evader’s control v,(-). At time T(z’) each of the pursuers with 
subscript satisfying (4.7) will capture the evader. 

Suppose that the initial position z” = (zy, . . . , z$ is such that (4.6) does not hold. Then p(z”) 6 0 and 

{jls(u ) = 1: max&z,” ,u ) c 01 + 0 

Choose an element v” of this set as the evader’s control. Then g,(z”, v”) = 0. Consequently, taking 
(4.4) into consideration, we see that for all pi > 0 

Multiply both sides of the inequality by t > 0 and put pi = l/t. then, using the Minimax theorem 
[l, lo], we obtain 

ma [(~~~Z~~+t~~(pi~u~~~f(Pj~uo~I~o 
Pie J I 

for all t > 0. Since 

it follows from Cauchy’s formula that for all t > 0 

inf d,(Zi(t)lO) > 0 
q(.kns 

Thus, if the evader employs the above vector v” as his control over a semi-infinite interval, whatever 
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control law is chosen by the pursuer group, one has cr(z(t)) > 0, meaning that the evader will avoid 
capture. 

Corokzly 4.1. Suppose that in the simple group pursuit problem (4.3) the terminal payoff function 
has the form 

(T(z) = ,miyf&iI&is), Ei > 0 

Then, if the initial position z” = (& . . . ,z$ is such that 0 E intco {zp + I$}~=~, at least one of the 
pursuers will capture the evader within a finite time. If 0 4 intco {Z”i + qS}~=i, the evader will avoid 
capture over a semi-infinite time interval. 

1. 
2. 
3. 

4. 
5. 

6. 

ROCKAPELLAR, R., ConvexAnufys~. Princeton University Press, Princeton, NJ, 1970. 
CHIKRII, A. A, Conflict-controllable Processes. Naukova Dumka, Kiev, 1992. 
CHIKRII, A. A. and RAPPOPORT, I. S., Guaranteed result in a quasi-linear differential game. Dokl. Ross. Akud Nuuk, 
1995,341,4,452-455. 
CHIKRII, A. A. and RAPPOPORT I. S., Calibration functions in differential games. Avtomufika, 1992, 6.9-16. 
PSHBNICHNYI, B. N., CHIKRII, A. A. and RAPPOPORT I. S., An effective method for solving differential games with 
several pursuers. Dokl. Akad. Nauk SSSR, 1981,256,3,530-535. 
GRIGORENKO, N. L., MathematicalMethods ofthe Control of Several Dynamical Processes. Izd. MO& Gos. Univ., Moscow, 
1990. 

7. KRASOVSKII, N. N. and SUBBOTIN, A. I., Positional Differential Games. Nauka, Moscow, 1974. 
8. PONTRYAGIN, L. S., Selected Scientific Papers, Vol. 2., Nauka, Moscow, 1988. 
9. IOPPE, A. D. and TIKHOMIROV, V M., Theory of Extremal Problems. Nauka, Moscow, 1974. 

10. PSHENICHNYI, B. N., Convex Analysis and Extremal Problems. Nauka, Moscow, 1980. 
11. AUBIN, J.-P and EKELAND, I., Applied Nonlinear Analysis. Wiley, New York, 1984. 
12. KURATOWSKI, K., Topology, Vol. I. Panstwowe Wydawn. Naukowe, Warsaw [and Academic Press, New York], 1966. 

REFERENCES 

Tmnslated by D.L. 


